KAIST, 세포·약물 반응 조립·예측하는 AI 기술 개발
[충청뉴스 이성현 기자] 국내 연구진이 세포와 약물 반응을 레고블록처럼 분해하고 다시 조립하는 방식으로 수학적으로 모델링해 실제로 실험하지 않은 세포와 약물의 새로운 반응은 물론 임의의 유전자 조절 효과까지 예측할 수 있는 새로운 AI 기술을 개발했다.
한국과학기술원(KAIST)은 바이오및뇌공학과 조광현 교수 연구팀이 생성형 AI를 활용해 세포를 목표 상태로 유도할 수 있는 약물과 유전자 표적을 찾아내는 새로운 인공지능 기술을 개발했다고 16일 밝혔다.
‘잠재공간(latent space)’은 이미지 생성 AI가 사물이나 세포의 특징을 수학적으로 정리해 놓은 보이지 않는 ‘지도’와 같은 공간이다.
연구팀은 이 공간에서 세포의 상태와 약물의 효과를 각각 분리해내고, 이를 다시 조합해 실험하지 않은 세포-약물 조합의 반응을 예측하는 방식을 고안했다. 이 원리를 확장해 특정 유전자를 조절했을 때 어떤 변화가 나타나는지도 예측할 수 있음을 보였다.
연구팀은 실제 데이터를 활용해 이 기술을 검증했다. 그 결과 대장암 세포를 정상 세포에 가까운 상태로 되돌릴 수 있는 분자 표적을 AI가 찾아냈고, 이를 세포 실험으로 입증했다.
이는 이번 성과가 암 치료에만 국한되는 것이 아니라 학습되지 않은 다양한 세포 상태 전환과 약물 반응을 예측할 수 있는 범용 플랫폼임을 보여주는 사례다.
즉 단순히 ‘이 약이 효과가 있다’ 수준이 아니라 그 약이 세포 안에서 어떻게 작용하는지 원리까지 밝힐 수 있었다는 점에서 의미가 크다.
이번 연구는 세포를 원하는 상태로 바꿀 수 있는 방법을 설계하는 데 큰 도움이 되는 도구다. 앞으로 신약 개발이나 암 치료뿐만 아니라 손상된 세포를 다시 건강한 세포처럼 되살리는 연구 등 여러 의학 분야에 널리 활용될 수 있을 것으로 기대된다.
조광현 교수는 “이미지 생성 AI 기술에서 착안해 세포도 원하는 방향으로 바꿀 수 있다는 아이디어인 ‘방향 벡터’ 개념을 적용했다”며 “이번 기술은 특정 약물이나 유전자가 세포에 미치는 효과를 정량적으로 분석하고 아직 알려지지 않은 반응까지 예측할 수 있는 범용 AI 방식이라는 점에서 의미가 크다”고 설명했다.